DFT insights into the adsorption of NH3-SCR related small gases in Mn-MOF-74.

نویسندگان

  • Minhua Zhang
  • Xuewei Huang
  • Yifei Chen
چکیده

Mn-MOF-74 has great potential to catalyze selective catalytic reduction (SCR) reaction with NH3 being the reductant (NH3-SCR). However, the reaction mechanism, in particular the adsorptive properties of key reactive species in Mn-MOF-74, remains ambiguous. Besides, the effects of impurities such as H2O and SO2 on the process need further investigation. In this paper, based on density functional theory (DFT) calculations, we studied the adsorption characteristics of six NH3-SCR related small gases, namely NH3, NO2, NO, O2, H2O and SO2. DFT results show that the Mn-MOF-74 structure can bind these molecules relatively strongly in the following order: NH3 > NO2 > NO > O2, allowing for subsequent NH3-SCR reaction. In addition, a possible pathway of NO conversion to NO2 was calculated. Investigation on competitive adsorption of NH3 and H2O, NH3 and SO2 reveals that both H2O and SO2 are probable to replace NH3 under certain conditions, indicating that the two impurity gases may affect the activity of the NH3-SCR reaction. Compared with H2O, SO2 can displace NH3 more easily and should not be neglected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarizable Force Fields for CO2 and CH4 Adsorption in M-MOF-74

The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption capacity. The chemical environment of the adsorbate molecule in M-MOF-74 can be tuned by exchanging the metal ion incorporated in the ...

متن کامل

Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal-Organic Frameworks.

We present a systematic and efficient methodology to derive accurate (nonpolarizable) force fields from periodic density functional theory (DFT) calculations for use in classical molecular simulations. The methodology requires reduced computation cost compared with other conventional ways. Moreover, the whole process is performed self-consistently in a fully periodic system. The force fields de...

متن کامل

CO2 Adsorption Properties and Fine Structural Characterization of Co and Ni Based MOF-74 Using XANES/EXAFS Spectroscopy

Abstract: CO2 is one of the most important greenhouse gases and its removal from flue gas and natural gas has become increasingly important. We report the synthesis, characterization, and CO2 adsorption properties of two similar metal organic frameworks; Co and Ni based MOF-74. The BET specific surface areas of MOF-74(Co) and MOF-74(Ni) MOFs were 1,406 and 1,418 mg, respectively with the identi...

متن کامل

Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3.

The catalysts of iron-doped Mn-Ce/TiO2 (Fe-Mn-Ce/TiO2) prepared by sol-gel method were investigated for low temperature selective catalytic reduction (SCR) of NO with NH3. It was found that the NO conversion over Fe-Mn-Ce/TiO2 was obviously improved after iron doping compared with that over Mn-Ce/TiO2. Fe-Mn-Ce/TiO2 with the molar ratio of Fe/Ti = 0.1 exhibited the highest activity. The results...

متن کامل

Ammonium adsorption on Brønsted acidic centers on low-index vanadium pentoxide surfaces

Vanadium-based catalysts are used in many technological processes, among which the removal of nitrogen oxides (NOx) from waste gases is one of the most important. The chemical reaction responsible for this selective catalytic reaction (SCR) is based on the reduction of NOx molecules to N2, and a possible reductant in this case is pre-adsorbed NH3. In this paper, NH3 adsorption on Brønsted OH ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 41  شماره 

صفحات  -

تاریخ انتشار 2016